研究背景
熔融鹽(yan)是太(tai)陽能光(guang)熱(re)(re)電站中(zhong)蓄熱(re)(re)系(xi)統的重要材(cai)料,但是由(you)于(yu)其導熱(re)(re)性能差、比熱(re)(re)容相對較低(di)等缺點使得在蓄熱(re)(re)系(xi)統中(zhong)的應用受到限制,故添(tian)加(jia)膨脹(zhang)石(shi)墨[1]、泡(pao)沫(mo)金屬[2]、納米顆(ke)粒或(huo)石(shi)墨烯[3]等具有良好導熱(re)(re)性材(cai)料,成為提高(gao)熔融鹽(yan)蓄熱(re)(re)性能的有效方式。
目前對純熔(rong)融(rong)鹽(yan)的(de)熔(rong)化特(te)性研(yan)究不充分(fen),以多孔(kong)介質為(wei)基(ji)(ji)材(cai)和相變(bian)材(cai)料(liao)(liao)為(wei)母體(ti)的(de)復合相變(bian)材(cai)料(liao)(liao)在儲/放(fang)能過(guo)程(cheng)中(zhong)的(de)相關流動與傳熱過(guo)程(cheng)的(de)研(yan)究尚不深入(ru),納(na)米材(cai)料(liao)(liao)強化熔(rong)融(rong)鹽(yan)的(de)特(te)性與機理尚未闡明,多孔(kong)基(ji)(ji)材(cai)和納(na)米顆粒(li)添加入(ru)在系統(tong)層面缺乏一些實驗驗證。本文重點介紹肖(xiao)鑫(xin)副(fu)教(jiao)授等在多孔(kong)基(ji)(ji)納(na)米熔(rong)融(rong)鹽(yan)熱物性及(ji)儲/放(fang)能特(te)性方(fang)面的(de)研(yan)究進展。
研究成果
本研(yan)究首(shou)先兼顧納米顆粒和(he)泡沫金屬(shu)的優點(dian),制備100~250℃溫區對(dui)應的以熔融鹽(yan)為母體(ti)的熔鹽(yan)/泡沫金屬(shu)/石墨(mo)烯復合相變儲能(neng)(neng)材料(liao),其吸熱系數(shu)可(ke)增大360%(圖1(c))。并(bing)且多次循(xun)環(huan)之后,仍(reng)能(neng)(neng)維持其相變特征,即合適的相變點(dian)和(he)相變潛熱(圖1(b))。
圖1納米熔融鹽/泡沫金屬復合相變材料的制備、循環穩定性和吸熱系數
分子(zi)動力學模(mo)(mo)擬方法作(zuo)為(wei)一種應(ying)(ying)(ying)用(yong)(yong)廣(guang)泛(fan)的(de)(de)(de)計(ji)算(suan)機模(mo)(mo)擬手段,可以對新材料的(de)(de)(de)研制(zhi)起(qi)到(dao)預測和指導作(zuo)用(yong)(yong),同(tong)時可以微觀尺度探索(suo)物(wu)質性(xing)能,揭(jie)示相應(ying)(ying)(ying)的(de)(de)(de)微觀機理。本研究(jiu)建立了(le)太陽鹽納(na)米(mi)流體模(mo)(mo)型(xing)(xing),并(bing)探究(jiu)加入(ru)不(bu)同(tong)質量分數(shu)納(na)米(mi)顆粒(li)對熔(rong)融(rong)鹽熱(re)物(wu)性(xing)的(de)(de)(de)影響。發現使用(yong)(yong)分子(zi)動力學模(mo)(mo)擬計(ji)算(suan)物(wu)質的(de)(de)(de)粘(zhan)度、比熱(re)容、均方位移等特性(xing)時不(bu)會(hui)(hui)因為(wei)模(mo)(mo)型(xing)(xing)的(de)(de)(de)大小(xiao)不(bu)同(tong)而產生尺寸(cun)效應(ying)(ying)(ying);但是用(yong)(yong)非平衡態(tai)法計(ji)算(suan)熱(re)導率時,會(hui)(hui)受到(dao)尺寸(cun)效應(ying)(ying)(ying)的(de)(de)(de)影響,應(ying)(ying)(ying)該使用(yong)(yong)大小(xiao)一致的(de)(de)(de)模(mo)(mo)型(xing)(xing)。熔(rong)融(rong)鹽納(na)米(mi)流體的(de)(de)(de)粘(zhan)度隨著納(na)米(mi)顆粒(li)的(de)(de)(de)添加而不(bu)斷增大,通過對體系的(de)(de)(de)徑向分布函數(shu)計(ji)算(suan),可以推測粘(zhan)度的(de)(de)(de)增大是由于納(na)米(mi)顆粒(li)的(de)(de)(de)加入(ru)使得基液(ye)(ye)中(zhong)陰陽離子(zi)之間(jian)相互作(zuo)用(yong)(yong)增大,從(cong)而限制(zhi)了(le)基液(ye)(ye)的(de)(de)(de)擴(kuo)散(san)運動。
熔融鹽納(na)(na)米(mi)流體(ti)(ti)的(de)比熱容(rong)隨著納(na)(na)米(mi)顆(ke)粒質(zhi)量(liang)(liang)分(fen)數的(de)增(zeng)大呈現(xian)先增(zeng)大后減小(xiao)的(de)趨勢,在(zai)加(jia)入2%質(zhi)量(liang)(liang)分(fen)數納(na)(na)米(mi)顆(ke)粒時達到最大值,相比純太陽鹽,增(zeng)大了(le)2.05%(圖2(c))。通過(guo)分(fen)子動力學模擬計(ji)算發(fa)現(xian)在(zai)納(na)(na)米(mi)顆(ke)粒表面存(cun)在(zai)K+壓縮層,并推測這是比熱容(rong)增(zeng)強的(de)微觀(guan)機理(圖2(e))。納(na)(na)米(mi)顆(ke)粒質(zhi)量(liang)(liang)分(fen)數的(de)增(zeng)大也使(shi)得熔融鹽體(ti)(ti)系(xi)的(de)熱導(dao)(dao)率不斷增(zeng)大,通過(guo)對體(ti)(ti)系(xi)能(neng)量(liang)(liang)分(fen)析可以(yi)推測是離(li)子的(de)碰撞被(bei)強化導(dao)(dao)致熱導(dao)(dao)率的(de)增(zeng)強(圖2(d))。
圖2太陽鹽熱物性的分子動力學模擬研究
熔(rong)(rong)(rong)融(rong)(rong)鹽以及其在(zai)多(duo)孔(kong)介質中的(de)相變特性對(dui)于指導(dao)熔(rong)(rong)(rong)融(rong)(rong)鹽蓄能(neng)有重(zhong)要(yao)意(yi)義。采(cai)用VOF和焓-多(duo)孔(kong)介質模(mo)型耦合求解,數值研(yan)究了熔(rong)(rong)(rong)融(rong)(rong)鹽熔(rong)(rong)(rong)化(hua)過(guo)程(cheng)熔(rong)(rong)(rong)鹽/空(kong)氣(qi)界面(mian)(mian)的(de)上升和固(gu)/液界面(mian)(mian)的(de)變化(hua)。發現由體積膨脹引起(qi)的(de)熔(rong)(rong)(rong)融(rong)(rong)鹽/空(kong)氣(qi)界面(mian)(mian)在(zai)熔(rong)(rong)(rong)化(hua)過(guo)程(cheng)中逐漸上升,而由體積收縮引起(qi)的(de)熔(rong)(rong)(rong)融(rong)(rong)鹽/空(kong)氣(qi)界面(mian)(mian)在(zai)凝固(gu)過(guo)程(cheng)中逐漸下(xia)降(圖3(b))。受到自(zi)然(ran)對(dui)流和密度(du)差影響,固(gu)態熔(rong)(rong)(rong)融(rong)(rong)鹽會出現明顯(xian)的(de)下(xia)沉(chen)現象,這為蓄能(neng)系(xi)統封裝(zhuang)過(guo)程(cheng)提供了重(zhong)要(yao)的(de)理論指導(dao)。
自(zi)然(ran)(ran)對(dui)(dui)(dui)流(liu)(liu)在熔鹽(yan)融化過(guo)程(cheng)(cheng)中占據主導,可分為出現、發展(zhan)、消退(tui)三個(ge)階(jie)段;熔鹽(yan)熔化過(guo)程(cheng)(cheng)中的(de)(de)溫差和(he)固/液(ye)界(jie)面(mian)的(de)(de)位(wei)置也影響了自(zi)然(ran)(ran)對(dui)(dui)(dui)流(liu)(liu)的(de)(de)發展(zhan),熔化后期自(zi)然(ran)(ran)對(dui)(dui)(dui)流(liu)(liu)顯著地削弱(ruo)。與沒有(you)泡(pao)沫金屬的(de)(de)純熔融鹽(yan)相(xiang)比,泡(pao)沫金屬的(de)(de)加入可以有(you)效地提高熔融鹽(yan)的(de)(de)熔融速率,但對(dui)(dui)(dui)自(zi)然(ran)(ran)對(dui)(dui)(dui)流(liu)(liu)有(you)抑制作用。
圖3純太陽鹽的熔化/凝固特性以及其在多孔介質中的熔化特性
接著,以該(gai)共熔(rong)(rong)(rong)融鹽(yan)(yan)、熔(rong)(rong)(rong)融鹽(yan)(yan)/泡(pao)沫(mo)(mo)銅復(fu)合物和(he)熔(rong)(rong)(rong)融鹽(yan)(yan)/泡(pao)沫(mo)(mo)鎳復(fu)合物作(zuo)為蓄(xu)(xu)存介質,在圓柱形潛熱(re)蓄(xu)(xu)熱(re)單(dan)(dan)元內完成了(le)其儲/放能實驗。構建了(le)一(yi)個包括焓-多孔介質項(xiang)、非(fei)(fei)達西效(xiao)應項(xiang)、考慮(lv)熔(rong)(rong)(rong)融鹽(yan)(yan)和(he)泡(pao)沫(mo)(mo)金屬間(jian)熱(re)非(fei)(fei)平(ping)衡的(de)雙溫(wen)(wen)度能量方(fang)程(cheng)的(de)三維模(mo)型(xing)來進一(yi)步數值研究(jiu)該(gai)蓄(xu)(xu)熱(re)單(dan)(dan)元的(de)傳熱(re)特性(xing)。通過(guo)圓柱繞流(liu)的(de)方(fang)式構建了(le)熔(rong)(rong)(rong)融鹽(yan)(yan)相變材料和(he)泡(pao)沫(mo)(mo)金屬的(de)雙溫(wen)(wen)度能量方(fang)程(cheng),發現由于泡(pao)沫(mo)(mo)金屬的(de)流(liu)動阻力,對于熔(rong)(rong)(rong)融鹽(yan)(yan)/泡(pao)沫(mo)(mo)金屬復(fu)合物,熔(rong)(rong)(rong)化過(guo)程(cheng)自然對流(liu)有所削弱。但由于熱(re)導率顯著增強,由導熱(re)主(zhu)導的(de)放能過(guo)程(cheng)顯著加(jia)快(kuai)。此外(wai),發現了(le)熔(rong)(rong)(rong)融鹽(yan)(yan)和(he)泡(pao)沫(mo)(mo)金屬間(jian)的(de)熱(re)非(fei)(fei)平(ping)衡特性(xing),由于金屬骨(gu)(gu)架高的(de)熱(re)導率,熔(rong)(rong)(rong)融鹽(yan)(yan)和(he)泡(pao)沫(mo)(mo)金屬間(jian)存在很(hen)明顯的(de)溫(wen)(wen)差(圖4(c)),比(bi)如:儲能過(guo)程(cheng)中熔(rong)(rong)(rong)鹽(yan)(yan)和(he)銅骨(gu)(gu)架的(de)最(zui)大(da)溫(wen)(wen)差為6.8°C,而熔(rong)(rong)(rong)鹽(yan)(yan)和(he)鎳骨(gu)(gu)架的(de)最(zui)大(da)溫(wen)(wen)差為4.4°C。這提出了(le)在構建多孔蓄(xu)(xu)熱(re)介質中的(de)傳熱(re)模(mo)型(xing)時需考慮(lv)熱(re)非(fei)(fei)平(ping)衡現象(xiang)。
圖4儲能過程多孔基熔融鹽的溫度云圖和固/液界面、儲/放熱溫升/降特性、復合物中熔鹽和金屬骨架的溫差
熔(rong)(rong)(rong)融鹽(yan)(yan)儲/放(fang)(fang)(fang)熱(re)(re)的(de)(de)實際系(xi)(xi)統(tong)(tong)報道(dao)很少,采用多(duo)(duo)孔(kong)介質(zhi)強化(hua)純(chun)熔(rong)(rong)(rong)鹽(yan)(yan)的(de)(de)復(fu)(fu)合相(xiang)變(bian)材(cai)料(liao)(liao)系(xi)(xi)統(tong)(tong)的(de)(de)運行(xing)特性(xing)(xing)更(geng)是鮮有(you)報道(dao)。在對(dui)材(cai)料(liao)(liao)的(de)(de)熱(re)(re)物(wu)性(xing)(xing)研(yan)究之(zhi)后,開展了多(duo)(duo)孔(kong)基納米(mi)復(fu)(fu)合熔(rong)(rong)(rong)融鹽(yan)(yan)的(de)(de)儲/放(fang)(fang)(fang)熱(re)(re)特性(xing)(xing)研(yan)究。整個蓄能(neng)系(xi)(xi)統(tong)(tong)填(tian)充了純(chun)熔(rong)(rong)(rong)融鹽(yan)(yan)、納米(mi)熔(rong)(rong)(rong)鹽(yan)(yan)(含2 wt.%Al2O3)和納米(mi)熔(rong)(rong)(rong)鹽(yan)(yan)/泡(pao)(pao)沫(mo)銅復(fu)(fu)合物(wu)。然后在不(bu)(bu)同加熱(re)(re)溫(wen)(wen)度(du)下(xia)對(dui)純(chun)熔(rong)(rong)(rong)鹽(yan)(yan)和復(fu)(fu)合相(xiang)變(bian)材(cai)料(liao)(liao)進行(xing)了蓄能(neng)系(xi)(xi)統(tong)(tong)的(de)(de)儲/放(fang)(fang)(fang)熱(re)(re)試驗,測量(liang)了不(bu)(bu)同位置(zhi)(zhi)(包(bao)括徑向(xiang)位置(zhi)(zhi)、角向(xiang)位置(zhi)(zhi)和軸向(xiang)位置(zhi)(zhi))的(de)(de)溫(wen)(wen)度(du)變(bian)化(hua)和分布。結(jie)果表明,填(tian)充納米(mi)熔(rong)(rong)(rong)鹽(yan)(yan)/泡(pao)(pao)沫(mo)銅復(fu)(fu)合相(xiang)變(bian)材(cai)料(liao)(liao)的(de)(de)系(xi)(xi)統(tong)(tong)得到大幅(fu)度(du)的(de)(de)強化(hua)提(ti)高,例如:與純(chun)HITEC熔(rong)(rong)(rong)鹽(yan)(yan)相(xiang)比,在160℃的(de)(de)加熱(re)(re)溫(wen)(wen)度(du)下(xia)的(de)(de)蓄熱(re)(re)時間可縮短約58.5%。納米(mi)熔(rong)(rong)(rong)鹽(yan)(yan)/泡(pao)(pao)沫(mo)銅復(fu)(fu)合相(xiang)變(bian)材(cai)料(liao)(liao)在加熱(re)(re)溫(wen)(wen)度(du)為(wei)180℃時的(de)(de)平均蓄熱(re)(re)功(gong)率為(wei)109.32kW/m3,較純(chun)HITEC鹽(yan)(yan)的(de)(de)53.01 kW/m3提(ti)高了近100%(圖5(c))。
圖5多孔基納米熔融鹽儲/放熱曲線和蓄熱功率
最(zui)后,實驗研(yan)究(jiu)了梯級(ji)(ji)蓄(xu)(xu)(xu)熱(re)(re)裝置(zhi)的(de)(de)特(te)(te)性(xing),制備并填(tian)(tian)充了相變溫度(du)(du)(du)分別為120℃(Ca(NO3)2-KNO3-NaNO3),142℃(NaNO2-KNO3-NaNO3),155℃(Ca(NO3)2-KNO3-NaNO3)的(de)(de)3種共熔鹽(yan)(yan),在(zai)加熱(re)(re)溫度(du)(du)(du)分別為180℃、200℃和(he)220℃下,研(yan)究(jiu)了填(tian)(tian)充任(ren)意兩(liang)種熔融鹽(yan)(yan)的(de)(de)梯級(ji)(ji)蓄(xu)(xu)(xu)熱(re)(re)特(te)(te)性(xing)。結合ε-NTU分析方(fang)(fang)法,并與單一HITEC鹽(yan)(yan)(142℃)的(de)(de)蓄(xu)(xu)(xu)熱(re)(re)特(te)(te)性(xing)比(bi)較。發現梯級(ji)(ji)蓄(xu)(xu)(xu)熱(re)(re)的(de)(de)方(fang)(fang)式可將總蓄(xu)(xu)(xu)熱(re)(re)時長(chang)縮短10%左右,潛(qian)熱(re)(re)蓄(xu)(xu)(xu)熱(re)(re)時長(chang)提升13%(圖6(b));梯級(ji)(ji)蓄(xu)(xu)(xu)熱(re)(re)的(de)(de)方(fang)(fang)式也可以將蓄(xu)(xu)(xu)熱(re)(re)系統的(de)(de)有效度(du)(du)(du)由0.06提升至0.14(圖6(d))。當換熱(re)(re)流體(ti)為200℃時,120~155℃組合的(de)(de)梯級(ji)(ji)儲熱(re)(re)裝置(zhi)具有最(zui)佳的(de)(de)性(xing)能(neng)。
圖6梯級熔鹽儲存裝置蓄熱時長及有效度
結論與展望
近些年,肖鑫副教授課題組從(cong)熔融鹽(yan)(yan)/納(na)米顆(ke)(ke)粒/泡(pao)沫金屬復(fu)合(he)物(wu)的結構特(te)性(xing)和(he)(he)熱(re)物(wu)性(xing)出發(fa)(fa),實驗和(he)(he)模擬剖(pou)析了熔融鹽(yan)(yan)熔化特(te)性(xing)(界面(mian)上(shang)升、重力下沉),理論分析揭示納(na)米顆(ke)(ke)粒和(he)(he)熔融鹽(yan)(yan)的界面(mian)尺寸(cun)效應(ying),以及(ji)多(duo)孔(kong)介質和(he)(he)熔鹽(yan)(yan)間的熱(re)非平衡特(te)性(xing)。最(zui)后研究了填充復(fu)合(he)熔融鹽(yan)(yan)的蓄能裝(zhuang)置的儲/放熱(re)特(te)性(xing),以及(ji)梯級蓄能方式的優化。相關研究有望為熔融鹽(yan)(yan)在太陽能集(ji)熱(re)發(fa)(fa)電的高效應(ying)用中發(fa)(fa)揮重要作用。未來可從(cong)耐(nai)腐蝕性(xing)、成本、相容性(xing)、封裝(zhuang)等上(shang)開展工作,從(cong)而推動熔融鹽(yan)(yan)蓄熱(re)的發(fa)(fa)展。
論文信息
[1]Xiao X,Zhang P,Li M.Experimental and numerical study of heat transfer performance of nitrates/expanded graphite composite PCM for solar energy storage.Energy Conversion and Management,2015,105:272-284.
[2]Zhang P,Xiao X,Meng ZN,Li M.Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement.Applied Energy,2015,137:758-772.
[3]Xiao X*,Jia HW,Pervaiz S,Wen DS*.Molten salt/Metal foam/Graphene nanoparticle phase change composites for thermal energy storage.ACS Applied Nano Materials,2020,3:5240-5251.
[4]Liu JJ,Xiao X*.Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application.Energy,2023,282:128732.
[5]Xiao X*,Jia HW,Wen DS,Zhao XD.Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite.Energy,2020,192:116593.